HYPOGLYCEMIA

HYPOGLYCEMIA

No fixed cut off

• FPG lower limit is 70 mg/dl

But lower values can also be normal

WHIPPLE'S TRIAD:

• (I) symptoms consistent with hypoglycemia,

• (2) a low plasma glucose concentration measured with a precise method (not a glucose monitor),

• (3) relief of symptoms after the plasma glucose level is raised.

SYMPTOMS

Neuroglycopenic

- behavioral changes,
- confusion,
- fatigue,
- seizure,
- loss of consciousness,
- death

Neurogenic (or autonomic)

Adrenergic symptoms

- palpitations,
- tremor,
- Anxiety

Cholinergic symptoms

- sweating,
- Hunger
- paresthesias

TABLE 420-2 PHYSIOLOGIC RESPONSES TO DECREASING PLASMA GLUCOSE CONCENTRATIONS			
Response	Glycemic Threshold, mmol/L (mg/dL)	Physiologic Effects	Role in Prevention or Correction of Hypoglycemia (Glucose Counterregulation)
↓Insulin	4.4–4.7 (80–85)	$\uparrow R_a (\downarrow R_d)$	Primary glucose regulatory factor/first defense against hypo- glycemia
↑ Glucagon	3.6–3.9 (65–70)	↑R _a	Primary glucose counterregulatory factor/second defense against hypoglycemia
↑ Epinephrine	3.6–3.9 (65–70)	\uparrow R _a , \downarrow R _c	Third defense against hypoglycemia, critical when glucagon is deficient
↑ Cortisol and growth hormone	3.6–3.9 (65–70)	\uparrow R _a , \downarrow R _c	Involved in defense against prolonged hypoglycemia; not critical
Symptoms	2.8–3.1 (50–55)	Recognition of hypoglycemia	Prompt behavioral defense against hypoglycemia (food ingestion)
↓ Cognition	<2.8 (<50)	_	Compromises behavioral defense against hypoglycemia

TABLE 420-1 CAUSES OF HYPOGLYCEMIA IN ADULTS

III or medicated individual

Drugs

Insulin or insulin secretagogue

Alcohol

Others

Critical illness

Hepatic, renal or cardiac failure

Sepsis

Inanition

3. Hormone deficiency

Cortisol

Glucagon and epinephrine (in insulin-deficient diabetes)

4. Non-islet cell tumor

Seemingly well individual

Endogenous hyperinsulinism

Insulinoma

Functional β-cell disorders (nesidioblastosis)

Noninsulinoma pancreatogenous hypoglycemia

Post–gastric bypass hypoglycemia

Insulin autoimmune hypoglycemia

Antibody to insulin

Antibody to insulin receptor

Insulin secretagogue

Other

Accidental, surreptitious, or malicious hypoglycemia

DIABETES

Type I DM

Type 2 DM

Early and late

CAUSES

Insulin

Oral drugs

• Metformin/ Gliptins/SU/ Glinides/ Glitazones/ GLP - I agonists

RISK FACTORS

- (1) insulin (or insulin secretagogue) doses are excessive, ill-timed, or of the wrong type;
- (2) the influx of exogenous glucose is reduced (e.g., during an overnight fast or after missed meals or snacks);
- (3) insulin-independent glucose utilization is increased (e.g., during exercise);
- (4) sensitivity to insulin is increased (e.g., with improved glycemic control, in the middle of the night, late after exercise, or with increased fitness or weight loss);
- (5) endogenous glucose production is reduced (e.g., after alcohol ingestion)
- (6)insulin clearance is reduced (e.g., in renal failure).

RISK FACTOR REDUCTION

Intensive blood glucose control

Metabolic memory

• Results of trials

OTHER CAUSES - DRUGS

- SU
- Insulin
- Alcohol
- angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists,
- β-adrenergic receptor antagonists,
- quinolone antibiotics,
- indomethacin,
- quinine
- sulfonamides.

CRITICAL ILLNESS

- renal, hepatic, or cardiac failure; sepsis are second only to drugs as causes of hypoglycemia.
- renal failure -the reduced clearance of insulin and the reduced mobilization of gluconeogenic precursors in renal failure.
- Sepsis is a relatively common cause of hypoglycemia.
- Increased glucose utilization is induced by cytokine production in macrophage rich tissues such as the liver, spleen, and lung.
- starvation,

HORMONAL CAUSES

Cortisol

• GH

NON-B-CELL TUMORS

• overproduction of an incompletely processed form of insulin-like growth factor II ("big IGF-II") that does not complex normally with circulating binding proteins and thus more readily gains access to target tissues.

ENDOGENOUS HYPERINSULINISM

- Critical diagnostic findings are a
- plasma insulin concentration ≥3 µU/mL (≥18 pmol/L),
- a plasma C-peptide concentration ≥0.6 ng/mL (≥0.2 nmol/L), and
- a plasma proinsulin concentration ≥5.0 pmol/L

 when the plasma glucose concentration is <55 mg/dL (<3.0 mmol/L) with symptoms of hypoglycemia

URGENT TREATMENT

- If the patient is able and willing, oral treatment with glucose tablets or glucose-containing fluids, candy, or food is appropriate. A
- reasonable initial dose is 20 g of glucose.
- If the patient is unable or unwilling (because of neuroglycopenia) to take carbohydrates IV administration of glucose (25 g) should be followed by a glucose infusion
- If IV therapy is not practical, SC or IM glucagon (1.0 mg in adults) can be used, particularly in patients with TIDM.
- These treatments raise plasma glucose concentrations only transiently, and patients should therefore be urged to eat as soon as is practical to replete glycogen stores.

SPECIFIC THERAPIES

Identifying the cause